这款安全摄像头名为“AIGuardman”,旨在帮助日本…

本文来自微信公众号“腾云”,作者:张吉豫张吉豫:中国人民大学法学院副教授、中国知识产权法学研究会理事、北京大学计算机博士AlphaGo战胜了人类顶尖围棋选手,无人驾驶汽车开始在公路上运行,擅长聊天的机器人可以成为你的朋友,人工智能离我们越来越近,带来很多希望的同时也引起了不少的忧虑和质疑,因为让人摸不透的复杂算法就像是一个黑箱。那么这个黑箱究竟应不应该被打破?又该如何打破呢?人工智能的挑战已经到来自去年AlphaGo战胜人类顶尖围棋手之后,人工智能这一概念真正成为了社会各界关注的焦点,也为各国政府所重视。

今天各类人工智能相关系统以深度学习算法为突出代表,凭借当今计算机系统及云计算平台提供的强大计算能力,以及欣欣向荣的传统和移动互联网、物联网所带来的日益丰富多样的数据资源,为人们提供了一幅可信的发展图景,相应的算法已在许多领域付诸使用,引起了无限热情期盼,也带来了众多质疑和担忧。无论期盼或是担忧,我们都正在见证着一个新的信息时代的开启。在这个时代,许多让我们一时还琢磨不透的人工智能算法,在进行着认知、学习、预测和决策,可能为我们提供医疗、法律、金融等方面的建议或决策,也可能直接操控汽车、无人机,甚至大规模杀伤性武器。如果回顾信息技术的发展历程,我们有理由相信,这一次技术创新和应用推广的发展速度也许会超乎我们的想象。

人们常说,法律总是滞后于社会发展。面对互联网技术带来的社会影响,我们刚刚建立起有一定体系的理论和规范,人工智能的挑战就已经到来。这一次,在政府、产业、资本和学术界的共力之下,面对人工智能可能带来的巨大社会影响,恐怕并无太多时间留给法律和政策制定者来慢慢观察和考量。追求可解释性依然是我们信赖的思维模式在时下热议的人工智能相关伦理、算法歧视、算法正确性、安全性等问题中,有一个问题被时常提起,即以深度学习算法为代表的人工智能算法的可解释性问题。

人类理性的发展历程使我们相信,如果一个判断或决策是可以被解释的,我们将更容易了解其优点与不足,更容易评估其风险,知道其在多大程度上、在怎样的场合中可以被信赖,以及我们可以从哪些方面对其进行不断改善,以尽量增进共识、减少风险,推动相应领域的不断发展。这样的思维范式或许是诞生在人工智能时代之前的稍显过时的思维模式。例如舍恩伯格等在《大数据时代:生活、工作与思维的大变革》一书中就提出,大数据技术引发思维变革;应更为关注事务之间的相关关系,而不是探索因果关系1。或许随着科技和社会的发展,未来会演化出新的思维范式,但目前这仍然是我们最成熟、最具共识、最可信赖的思维模式,我们仍然需要能够对重要问题的决策作出解释。

 由此,许多国家和地区已经开始探索在一些法规中对此予以一定的回应。IEEE、ACM等行业协会和计算机科学家们也在积极行动,以期促进算法的可解释性。例如,IEEE协会2016年的关于人工智能及自动化系统的伦理设计白皮书中,在多个部分都提出了对人工智能和自动化系统应有解释能力的要求。美国计算机协会美国公共政策委员会也在2017年初发布了《关于算法透明性和可问责性的声明》(StatementonAlgorithmicTransparencyandAccountability),提出了七项基本原则,其中之一即为“解释:鼓励使用算法决策的系统和机构对算法过程和特定决策提供解释。

这在公共政策中尤为重要”。2017年10月,美国加州大学伯克利分校的研究者们发布了《对人工智能系统挑战的伯克利观点》2一文,从人工智能的发展趋势出发,总结了九项挑战和研究方向,其中一项即为“可解释的决策”。该文中特别指出,在一些领域,人们希望知道人工智能程序的特定输入所具有的哪些性质导致了特定的输出结果。例如,人们可能希望知道,一个X光片中的哪些特征(例如大小、颜色、位置、形式等),导致了特定的诊断结果,以及这些特征的小扰动会使诊断结果发生怎样的变化;还有哪些类型的输入会导致类似的诊断结果,等等。

人工智能的算法黑箱并不会比自然现象更难以分析▲机器学习是人工智能的一种途径或子集,它强调“学习”而不是计算机程序,一个系统可以从自身的错误中学习来提高它的模式识别能力。这些看法认为增强人工智能算法的可解释性具有积极意义,但是,增强可解释性是否是可能的呢?诚然,以深度学习为代表的人工智能算法经常被描述成一个无人理解的黑箱。但正如莱西格(LawrenceLessig)教授在其经典著作《Code2.0:网络空间中的法律》中所反复强调的,当前技术本身是怎样,并不等同于技术必须是怎样。实际上人工智能算法的输出仍然是由数据和代码决定的,并不会比自然现象更难以分析和解释,更何况其设计者还可以通过一些机制从内部增强其可解释性。

一方面,人们可以研究如何更好地从观察的角度来解释人工智能算法。我们至少可以将人工智能算法作为一个客观事物来进行观察、实验和分析。例如,我们可以通过观察算法对于不同输入所产生的输出,来尝试了解其规律。更进一步地,对于比较复杂的人工智能算法系统,人们也可以通过搭建一套自动测试分析系统来进行辅助分析。